Skip to main content Skip to main navigation menu Skip to site footer

Function and dysfunction of fatty acid mobilization: a review.


Western populations have a growing obesity epidemic due in part to excessive nutrient intake from high-fat diets, which are increasingly common. Overindulgence of nutrients is associated with a greater incidence of metabolic dysfunction and a greater risk for obesity, diabetes, hypertension, and other metabolic disorders that lower quality of life. Research in humans and animal models has improved our understanding of how excess circulating free fatty acids negatively impact the ability of muscle and other tissues to regulate nutrient uptake and utilization. It is generally accepted by the scientific community that excess circulating fatty acids lead to insulin resistance, but there is little clarity regarding the underlying mechanisms. In the present review, we will outline the current understanding of the characteristics associated with fatty acid mobilization and fatty acid utilization within specific tissues. We will also discuss the potential mechanistic role of hyperlipidemia on metabolic dysfunction associated with type 2 diabetes.


  1. Bastien M, Poirier P, Lemieux I, Despres JP. Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog Cardiovasc Dis. 2014;56(4):369-81 10.1016/j.pcad.2013.10.016.
  2. Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol. 2008;9(5):367-77
  3. Ebeling P, Koivisto VA. Non-esterified fatty acids regulate lipid and glucose oxidation and glycogen synthesis in healthy man. Diabetologia. 1994;37:202-9
  4. Cnop M, Hannaert JC, Hoorens A, Eizirik DL, Pipeleers D. Inverse relationship between cytotoxicity of free fatty acids in pancreatic islet cells and cellular triglyceride accumulation. Diabetes. 2001;50:1771-7
  5. Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science. 2004;306(5700):1383-6
  6. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005;365:1415-28
  7. Lass A, Zimmermann R, Oberer M, Zechner R. Lipolysis - a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog Lipid Res. 2011;50(1):14-27
  8. Ghosh N, Patel N, Jiang K, Watson JE, Cheng J, Chalfant CE, et al. Ceramide-activated protein phosphatase involvement in insulin resistance via akt, serine/arginine-rich protein 40, and ribonucleic acid splicing in l6 skeletal muscle cells. Endocrinology. 2007;148(3):1359-66 10.1210/en.2006-0750.
  9. Jia Z, Pei Z, Maiguel D, Toomer CJ, Watkins PA. The fatty acid transport protein (fatp) family; very long chain acyl-coa synthetases or solute carries? J Mol Neurosci. 2007;33:25-31
  10. Peckett AJ, Wright DC, Riddell MC. The effects of glucocorticoids on adipose tissue lipid metabolism. Metabolism. 2011;60:1500-10
  11. Calder PC. Functional roles of fatty acids and their effects of human health. J Parenter Enteral Nutr. 2015;39(1 Suppl):18S-32S
  12. Stinkens R, Goossens GH, Jocken JW, Blaak EE. Targeting fatty acid metabolism to improve glucose metabolism. Obes Rev. 2015;16(9):715-57
  13. Meex RC, Hoy AJ, Mason RM, Martin SD, McGee SL, Bruce CR, et al. Atgl-mediated triglyceride turnover and the regulation of mitochondrial capacity in skeletal muscle. Am J Physiol Endocrinol Metab. 2015;308(11):E960-70
  14. Hotamisligil GS, Bernlohr DA. Metabolic functions of fabps-mechanisms and therapeutic implications. Nat Rev Endocrinol. 2015;11(10):592-605
  15. Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle its role in insulin senstivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963;281(7285):785-9
  16. Felley CP, Felley EM, Van Melle GD, Frascarolo P, Jequier E, Felber JP. Impairment of glucose disposal by infusion of triglycerides in humans: Role of glycemia. Am J Physiol. 1989:747-52
  17. Pan DA, Lillioja S, Kriketos AD, Milner MR, Baur LA, Bogardus C, et al. Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes. 1997;46:983-8
  18. Perseghin G, Scifo P, De Cobelli F, Pagliato E, Battezzati A, Arcelloni C, et al. Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans a 1h-13c nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes. 1999;48:1600-6
  19. Boden G, Lebed B, Schatz M, Homko C, Lemieux S. Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects. Diabetes. 2001;50:1612-7
  20. Jacob S, Machann J, Rett K, Brechtel K, Volk A, Renn W, et al. Association of increased intramyocellular lipid content with insulin resistance in lean nondiabetic offspring of type 2 diabetic subjects. Diabetes. 1999;48:1113-9
  21. Bachmann OP, Dahl DB, Brechtel K, Machann J, Haap M, Maier T, et al. Effects of intravenous and dietary lipid challenge on intramyocellular lipid content and the relation with insulin sensitvity in humans. Diabetes. 2001;50:2579-84
  22. Krssak M, Falk Petersen K, Dresner A, DiPietro L, Vogel SM, Rothman DL, et al. Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans a 1h nmr spectroscopy study. Diabetologia. 1999;42:113-6
  23. Dole VP. A relation between non-esterified fatty acids in plasma and the metabolism of glucose. J Clin Invest. 1956;35:150-4
  24. Penicaud L, Ferre P, Kande J, Leturque A, Issad T, Girard J. Effect of anesthesia on glucose production and utilization in rats. Am J Physiol. 1987;252:365-9
  25. Corpeleijn E, Saris WH, Blaak EE. Metabolic flexibility in the development of insulin resistance and type 2 diabetes: Effects of lifestyle. Obes Rev. 2009;10(2):178-93
  26. Bugianesi E, McCullough AJ, Marchesini G. Insulin resistance: A metabolic pathway to chronic liver disease. Hepatology. 2005;42(5):987-1000
  27. Yki-Jarvinen H. Liver fat in the pathogenesis of insulin resistance and type 2 diabetes. Dig Dis. 2010;28(1):203-9 10.1159/000282087.
  28. Yu S, Rao S, Reddy JK. Peroxisome proliferator-activated receptors, fatty acid oxidation, steatohepatitis and hepatocarcinogenesis. Current Molecular Medicine. 2003;3(6):561-72
  29. Hashimoto T, Fujita T, Usuda N, Cook W, Qi C, Peters JM, et al. Peroxisomal and mitochondrial fatty acid beta-oxidation in mice nullizygous for both peroxisome proliferator-activated receptor alpha and peroxisomal fatty acyl-coa oxidase. Genotype correlation with fatty liver phenotype. J Biol Chem. 1999;274(27):19228-36.
  30. Hashimoto T, Cook WS, Qi C, Yeldandi AV, Reddy JK, Rao MS. Defect in peroxisome proliferator-activated receptor alpha-inducible fatty acid oxidation determines the severity of hepatic steatosis in response to fasting. J Biol Chem. 2000;275(37):28918-28 10.1074/jbc.M910350199.
  31. Reddy JK. Nonalcoholic steatosis and steatohepatitis iii. Peroxisomal. Am J Physiol Gastrointest Liver Physiol. 2001;281:G1333- G9
  32. Sako Y, Grill VE. A 48-hour lipid infusion in the rat time-dependently inhibits glucose-induced insulin secretion and b cell oxidation through a process llikely coupled to fatty acid oxidation. Endocrinology. 1990;127(4):1580-9
  33. Polonsky KS. The b-cell in diabetes: From molecular genetics to clinical research. Am Diabetes Assoc. 1994;44:705-17
  34. Paolisso G, Gambardella A, Amato L, Tortoriello R, D’Amore A, Varricchio M, et al. Opposite effects of short-and long-term fatty acid infusion on insulin secretion in healthy subjects. Diabetologia. 1995;38:1295-9
  35. Boden G, Chen X, Rosner J, Barton M. Effects of a 48-h fat infusion on insulin secretion and glucose utilization. Diabetes. 1995;44:1239-42
  36. Prentki M, Nolan CJ. Islet beta cell failure in type 2 diabetes. J Clin Invest. 2006;116(7):1802-12
  37. Meier DT, Morcos M, Samarasekera T, Zraika S, Hull RL, Kahn SE. Islet amyloid formation is an important determinant for inducing islet inflammation in high-fat-fed human iapp transgenic mice. Diabetologia. 2014;57(9):1884-8 10.1007/s00125-014-3304-y.
  38. Westermark PJ, Virchows AA. Fine structure of islets of langerhans in insular amyloidosis. 1973;359(1):1-18
  39. Jung IR, Choi SE, Jung JG, Lee SA, Han SJ, Kim HJ, et al. Involvement of iron depletion in palmitate-induced lipotoxicity of beta cells. Mol Cell Endocrinol. 2015;407:74-84 10.1016/j.mce.2015.03.007.
  40. Roomp K, Kristinsson H, Schvartz D, Ubhayasekera K, Sargsyan E, Manukyan L, et al. Combined lipidomic and proteomic analysis of isolated human islets exposed to palmitate reveals time-dependent changes in insulin secretion and lipid metabolism. PLOS ONE. 2017;12(4):e0176391 10.1371/journal.pone.0176391.
  41. Lee JH, Jung IR, Choi SE, Lee SM, Lee SJ, Han SJ, et al. Toxicity generated through inhibition of pyruvate carboxylase and carnitine palmitoyl transferase-1 is similar to high glucose/palmitate-induced glucolipotoxicity in ins-1 beta cells. Mol Cell Endocrinol. 2014;383(1-2):48-59 10.1016/j.mce.2013.12.002.

How to Cite

Beard, J. K., & Yates, D. T. (2019). Function and dysfunction of fatty acid mobilization: a review. Diabesity, 5(1).




Search Panel