Skip to main content Skip to main navigation menu Skip to site footer

Enhancement of the Neuroprotective Effect of Curcumin in Combination with Piperine in Nicotinamide-Streptozotocin Induced Diabetic Rats.

  • Rohini Gurav ,
  • Subhash Bodhankar ,
  • Arulmozhi Sinnathambi ,
  • Mahesh Ghaisas ,
  • Kakasaheb Mahadik ,

Abstract

Introduction: Curcumin (CUR) is a hydrophobic molecule with poor bioavailability.Piperine is reported to enhance the bioavailability of drugs by increasing absorption in the small intestine and decreasing glucuronidation in the liver.

Objective:The objective of the present investigation was to evaluate the neuroprotectiveeffect of curcuminincombinationwith piperine innicotinamide- streptozotocin (NIC-STZ) induced diabetic rats.

Methods:MaleWistar rats were divided into groups viz.vehicle control, disease control,glibenclamide (1), glibenclamide+ piperine(1+50), curcumin (50) and curcumin (50) with piperine10, 30 and 50.All the groups except vehicle control were induced diabetes by injecting NIC-STz. The animals received treatment daily for six weeks after the confirmation of diabetic status.Behavioural, biochemical and histological parameters were evaluated to access the neuroprotective effect.

Results: Oral administration of curcumin + piperine (50+50 mg/kg) caused a significant fall in blood glucose level. Disease control showed increased paw withdrawal latency and nociceptive threshold compared with vehicle control. Curcumin + piperine treated animals showed decreased paw withdrawal latency. Combination of curcumin + piperine (50+50 mg/kg, p.o.) showed significant antioxidant property by increasing tissue GSH and SOD and lowering lipid content (MDA) compared to the disease control group. The histopathological study showed reduced damage to the sciatic nerve in curcumin + piperine (50+50 mg/kg, p.o.) treated group.

Conclusion: Itis concluded that the curcumin-piperine combination reducedthe degeneration of sciatic nerve by reduction of lipid peroxidation and lowering oxidative stress indicating the neuroprotective effect in diabetic neuropathy.

References

  1. Wuarin-Bierman L, Zahnd GR, Kaufmann F, Burcklen L, Adler J. Hyperalgesia in spontaneous and experimental animal models of diabetic neuropathy. Diabetologia. 1987;30(8):653-8; https://www.ncbi.nlm.nih.gov/pubmed/2820821
  2. Vincent AM, Russell JW, Low P, Feldman EL. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocrine reviews. 2004;25(4):612-28; https://www.ncbi.nlm.nih.gov/pubmed/15294884
  3. Bohr VA, Dianov GL. Oxidative DNA damage processing in nuclear and mitochondrial DNA. Biochimie. 1999;81(1-2):155-60; https://www.ncbi.nlm.nih.gov/pubmed/10214920
  4. Miller FJ, Rosenfeldt FL, Zhang C, Linnane AW, Nagley P. Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCRâ€based assay: lack of change of copy number with age. Nucleic acids research. 2003;31(11); https://www.ncbi.nlm.nih.gov/pubmed/12771225
  5. Williams A, Ramsden D. Nicotinamide: a double-edged sword. Parkinsonism & related disorders. 2005;11(7):413-20; https://www.ncbi.nlm.nih.gov/pubmed/16183323
  6. Kishore L, Kajal A, Kaur N. Role of Nicotinamide in Streptozotocin-Induced Diabetes in Animal Models. J Endocrinol Thyroid Res. 2017; 2:01-4; https://pdfs.semanticscholar.org/67c3/f577ab90ddff853487108317c9098adb78aa.pdf
  7. ______________________________________________________________________________
  8. Calcutt NA, Jorge MC, Yaksh TL, Chaplan SR. Tactile allodynia and formalin hyperalgesia in streptozotocin-diabetic rats: effects of insulin, aldose reductase inhibition and lidocaine. Pain. 1996;68(2-3):293-9; https://www.ncbi.nlm.nih.gov/pubmed/9121817
  9. ______________________________________________________________________________
  10. Edwards JL, Vincent AM, Cheng HT, Feldman EL. Pharmacology & Therapeutics of Diabetic neuropathy: Mechanisms to management. 2008; 120:1–34; https://www.ncbi.nlm.nih.gov/pubmed/18616962
  11. ______________________________________________________________________________
  12. Park SH, Sim YB, Kim SM, Kang YJ, Lee JK, Suh HW. Antinociceptive profiles and mechanisms of orally administered curcumin in various pain models. J Korean Soc Appl Biol Chem. 2012;55(1):57–61; https://www.researchgate.net/publication/257807740_Antinociceptiye_Profiles_and_Mechanisms_of_Orally_Administered_Curcumin_in_Various_Pain_Models
  13. ______________________________________________________________________________
  14. Atal CK, Dubey RK, Singh J. Biochemical basis of enhanced drug bioavailability by piperine: evidence that piperine is a potent inhibitor of drug metabolism. Journal of Pharmacology and Experimental Therapeutics. 1985, 232 (1) 258-262; https://www.ncbi.nlm.nih.gov/pubmed/3917507
  15. ______________________________________________________________________________
  16. Randall LO, Selitto J. A method for measurement of analgesic activity of inflamed tissue. Arch Int PharmacodynTher 1957; 111:209–19. https://www.ncbi.nlm.nih.gov/pubmed/13471093
  17. ______________________________________________________________________________
  18. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 1994; 53:55–63. https://www.ncbi.nlm.nih.gov/pubmed/7990513
  19. ______________________________________________________________________________
  20. Hargreaves K, Dubner R, Brown F, Flores C, Joris J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 1988; 32:77–88 https://www.ncbi.nlm.nih.gov/pubmed/3340425
  21. ______________________________________________________________________________
  22. Upaganlawar AB. Supplementation of Corosolic acid prevents the development of Neuropathic pain in Streptozotocin-induced diabetic rats. 2016;1(1):11–8. http://ambs-journal.co.uk/ojs-2.4.7-1/index.php/JPCS/article/view/66
  23. ______________________________________________________________________________
  24. Slater TF, Sawyer BC. The stimulatory effects of carbon tetrachloride and other halogenoalkanes or peroxidative reactions in rat liver fractions in vitro. Biochem J 1971; 123:805 14. https://www.ncbi.nlm.nih.gov/pubmed/4399399
  25. ______________________________________________________________________________
  26. Moron MS, Depierre JW, Mannervik B. Level of glutathione, glutathione reductases and glutathione S-transferase activities in rat lung and liver. BiochimBiophys Acta 1979; 582:67–78. https://www.ncbi.nlm.nih.gov/pubmed/760819
  27. ______________________________________________________________________________
  28. Misera HP, Fridovich I. The role of superoxide anion in the autooxidation of epinephrine and a simple assay for SOD. J Biol Chem 1972; 247:3170–5. https://www.ncbi.nlm.nih.gov/pubmed/4623845
  29. ______________________________________________________________________________
  30. Lowry OH, Rosenbrough NJ, Farr AC, Randell RJ. Protein measurement with the folin-phenol reagent. J Biol Chem 1951;193: 265–75. https://www.ncbi.nlm.nih.gov/pubmed/14907713
  31. ______________________________________________________________________________
  32. Yukari S, Desai SP, Haderer AE, Shinji S, Peter G, Anthony DC, et al. Neurologic and histopathologic evaluation after high-volume intrathecal amitriptyline. Reg Anesth Pain Med 2004; 29:434–40. https://kundoc.com/pdf-ameliorative-effects-quercetin-against-impaired-motor-nerve-function-inflammator.html
  33. ______________________________________________________________________________
  34. Bhat BG, Chandrasekhara N. Studies on the metabolism of piperine: Absorption, tissue distribution and excretion of urinary conjugates in rats. Toxicology 1986; 40:83-92. https://www.ncbi.nlm.nih.gov/pubmed/3715893
  35. ______________________________________________________________________________
  36. Wadhwa S, Singhal S, Rawal S. Bioavailability enhancement by piperine: a review. Asian Journal of Biomedical and Pharmaceutical Sciences. 2014 Sep 1;4(36):1. https://pdfs.semanticscholar.org/87df/d6aa12a19d1c4b8ba8a387d2211b866504d9.pdf
  37. ______________________________________________________________________________
  38. Vogel HG, editor. Drug discovery and evaluation: pharmacological assays. Springer Science & Business Media; 2002. https://www.springer.com/gp/book/9783540709954
  39. ______________________________________________________________________________
  40. Russell JW, Sullivan KA, Windebank AJ, Herrmann DN, Feldman EL. Neurons undergo apoptosis in animal and cell culture models of diabetes. Neurobiol Dis. 1999;6(5):347–63. https://www.ncbi.nlm.nih.gov/pubmed/10527803
  41. ______________________________________________________________________________
  42. Wang Y, Miao X, Sun J, Cai L. Oxidative Stress in Diabetes: Molecular basis for diet supplementation. 2015;65–72. https://www.hindawi.com/journals/omcl/2017/9702820/
  43. _____________________________________________________________________________

How to Cite

Gurav, R., Bodhankar, S., Sinnathambi, A., Ghaisas, M., & Mahadik, K. (2021). Enhancement of the Neuroprotective Effect of Curcumin in Combination with Piperine in Nicotinamide-Streptozotocin Induced Diabetic Rats. Diabesity, 7(1). https://doi.org/10.15562/diabesity.2021.60

HTML
247

Total
74

Share