ORIGINAL ARTICLE

Pharmacological Effect of Curcumin in Combination with Piperine in Nicotinamide-Streptozotocin Induced Diabetic Nephropathy in Male Wistar Rats.

Akash Kanzar, Subhash Bodhankar, arulmozhi s , Mahesh Ghaisas, Kakasaheb Mahadik

Akash Kanzar
Bharati Vidyapeeth (Deemed to be University) Poona College of Pharmacy, Erandwane, Pune-411038

Subhash Bodhankar
Bharati Vidyapeeth (Deemed to be University) Poona College of Pharmacy, Erandwane, Pune-411038

arulmozhi s
Bharati Vidyapeeth (Deemed to be University) Poona College of Pharmacy, Erandwane, Pune-411038. Email: arulmozhi.s@bharatividyapeeth.edu

Mahesh Ghaisas
Bharati Vidyapeeth (Deemed to be University) Poona College of Pharmacy, Erandwane, Pune-411038

Kakasaheb Mahadik
Bharati Vidyapeeth (Deemed to be University) Poona College of Pharmacy, Erandwane, Pune-411038
Online First: April 15, 2021 | Cite this Article
Kanzar, A., Bodhankar, S., s, a., Ghaisas, M., Mahadik, K. 2021. Pharmacological Effect of Curcumin in Combination with Piperine in Nicotinamide-Streptozotocin Induced Diabetic Nephropathy in Male Wistar Rats.. Diabesity 7(1). DOI:10.15562/diabesity.2021.61


Background-Curcumin is one of the principle substances found in the rhizome of Curcuma longa L. Piperine, an alkaloid separated from Piper nigrum L., has bioenhancer property.

Objective- The objective of the present study was to evaluate the nephroprotective activity of curcumin when administered concomitantly with piperine in diabetic rats.

Methods- Male Wistar rats were divided into eight groups viz. vehicle control,  disease control,   glibenclamide (1), glibenclamide + piperine (1+50) , curcumin (50), curcumin+ piperine (50+10), curcumin + piperine (50+30), curcumin + piperine (50+50). Overnight fasted rats were administered nicotinamide (110 mg/kg, i.p.) and 15 min after nicotinamide injection, streptozotocin (65 mg/kg, i.p.) was injected in all groups except group 1. Curcumin and piperine combination was administered as 2% Tween 80 suspension. Curcumin was administered (50 mg/kg) by oral route. Piperine was administered (10, 30, 50 mg/kg) through the oral route in combination with curcumin. Treatment proceeded up to 6 weeks. Biochemical, antioxidant parameters and histopathological studies were carried out at the end of the study.

 Result- Curcumin + piperine (50+50 mg/kg) administration caused a significant decrease in blood glucose, triglyceride, serum creatinine, serum uric acid, urine creatinine, and urine albumin levels. The antioxidant activity of the combination was evident as there was a significant increase in kidney GSH and SOD levels along with significant decrease in MDA. The histopathological study showed reduced damage to kidney in curcumin + piperine (50+50 mg/kg) group.

Conclusion- It is thus concluded that curcumin in combination with piperine showed enhanced nephroprotective activity in diabetic rats.

References

Gao Q, Shen W, Qin W, Zheng C, Zhang M, Zeng C, Wang S, Wang J, Zhu X, Liu Z. Treatment of db/db diabetic mice with triptolide: a novel therapy for diabetic nephropathy. Nephrology Dialysis Transplantation. 2010 18; 25(11):3539-47. https://www.ncbi.nlm.nih.gov/pubmed/20483955

______________________________________________________________________________

Chen KH, Hung CC, Hsu HH, Jing YH, Yang CW, Chen JK. Resveratrol ameliorates early diabetic nephropathy associated with suppression of augmented TGF-β/smad and ERK1/2 signaling in streptozotocin-induced diabetic rats. Chemico-biological interactions. 2011 15; 190(1):45-53. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863562/

______________________________________________________________________________

Yamagishi SI, Matsui T. Advanced glycation end products, oxidative stress and diabetic nephropathy. Oxidative medicine and cellular longevity. 2010; 3(2):101-8. https://www.ncbi.nlm.nih.gov/pubmed/20716934

______________________________________________________________________________

UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). The lancet. 1998 12; 352(9131):837-53. https://www.ncbi.nlm.nih.gov/pubmed/9742976

______________________________________________________________________________

Veerapur VP, Prabhakar KR, Thippeswamy BS, Bansal P, Srinivasan KK, Unnikrishnan MK. Antidiabetic effect of Dodonaea viscosa (L). Lacq. aerial parts in high fructose-fed insulin resistant rats: a mechanism based study.

https://www.ncbi.nlm.nih.gov/pubmed/21341538

______________________________________________________________________________

Saravanan G, Ponmurugan P. Ameliorative potential of S-allylcysteine: effect on lipid profile and changes in tissue fatty acid composition in experimental diabetes. Experimental and toxicologic pathology. 2012 1; 64 (6):639-44. https://www.semanticscholar.org/paper/Ameliorative-potential-of-S-allylcysteine%3A-effect-Saravanan-Ponmurugan/e349df719e32127c2fc1696237a7efa291f0832d

______________________________________________________________________________

Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: the Indian solid gold. InThe molecular targets and therapeutic uses of curcumin in health and disease 2007 (pp. 1-75). Springer, Boston, MA.

https://www.ncbi.nlm.nih.gov/pubmed/17569205

______________________________________________________________________________

Sharma S, Kulkarni SK, Chopra K. Curcumin, the active principle of turmeric (Curcuma longa), ameliorates diabetic nephropathy in rats. Clinical and experimental pharmacology and physiology. 2006; 33(10):940-5.

https://www.ncbi.nlm.nih.gov/pubmed/17002671

______________________________________________________________________________

Meghana K, Sanjeev G, Ramesh B. Curcumin prevents streptozotocin-induced islet damage by scavenging free radicals: a prophylactic and protective role. European Journal of Pharmacology. 2007 22; 577(1-3):183-91. https://www.ncbi.nlm.nih.gov/pubmed/17900558

______________________________________________________________________________

Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Molecular pharmaceutics. 2007 14; 4(6):807-18. https://www.ncbi.nlm.nih.gov/pubmed/17999464

______________________________________________________________________________

Sahebkar A. Why it is necessary to translate curcumin into clinical practice for the prevention and treatment of metabolic syndrome? Biofactors. 2013; 39(2):197-208. https://www.ncbi.nlm.nih.gov/pubmed/23239418

______________________________________________________________________________

Atal CK, Dubey RK, Singh J. Biochemical basis of enhanced drug bioavailability by piperine: evidence that piperine is a potent inhibitor of drug metabolism. Journal of Pharmacology and Experimental Therapeutics. 1985 Jan 1; 232(1):258-62. https://www.ncbi.nlm.nih.gov/pubmed/3917507

______________________________________________________________________________

Reen RK, Roesch SF, Kiefer F, Weibel FJ, Singh, J. Piperine impairs cytochrome PA50 1A1 by direct interaction with the enzyme and not by down regulation of CYP1A1 gene expression in rat hepatoma 5 L Cell. Line. Biochem. Biophys. Research Comm. 1996; 218:562-69. http://dx.doi.org/10.1006/bbrc.1996.0100

______________________________________________________________________________

Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochimica et Biophysica Acta (BBA)-General Subjects. 1979 4; 582(1):67-78. https://www.ncbi.nlm.nih.gov/pubmed/760819

______________________________________________________________________________

Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. Journal of Biological chemistry. 1972 May 25; 247(10):3170-5.

https://www.ncbi.nlm.nih.gov/pubmed/4623845

______________________________________________________________________________

Slater TF, Sawyer BC. The stimulatory effects of carbon tetrachloride and other halogenoalkanes on peroxidative reactions in rat liver fractions in vitro. General features of the systems used. Biochemical Journal. 1971 Aug 1; 123(5):805-14 https://www.ncbi.nlm.nih.gov/pubmed/4399399.

______________________________________________________________________________

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. Journal of biological chemistry. 1951; 193:265-75. https://www.ncbi.nlm.nih.gov/pubmed/14907713

______________________________________________________________________________

Yu W, Wu J, Cai F, Xiang J, Zha W, Fan D, Guo S, Ming Z, Liu C. Curcumin alleviates diabetic cardiomyopathy in experimental diabetic rats. PloS one. 2012 14; 7(12):e52013. https://www.ncbi.nlm.nih.gov/pubmed/23251674

______________________________________________________________________________

Meng B, Li J, Cao H. Antioxidant and antiinflammatory activities of curcumin on diabetes mellitus and its complications. Current pharmaceutical design. 2013 1; 19(11):2101-13. https://www.ncbi.nlm.nih.gov/pubmed/23116316

______________________________________________________________________________

Selvendiran K, Banu SM, Sakthisekaran D. Protective effect of piperine on benzo (a) pyrene-induced lung carcinogenesis in Swiss albino mice. Clinica Chimica Acta. 2004 1;350(1-2):73-8

https://onlinelibrary.wiley.com/doi/abs/10.1002/mnfr.201800086

______________________________________________________________________________

Darshan S, Doreswamy R. Patented antiinflammatory plant drug development from traditional medicine. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 2004; 18(5):343-57.

https://www.ncbi.nlm.nih.gov/pubmed/15173991

______________________________________________________________________________

Bajad S, Singla AK, Bedi KL. Liquid chromatographic method for determination of piperine in rat plasma: application to pharmacokinetics. Journal of Chromatography B. 2002 Sep 5; 776(2):245-9.

https://www.ncbi.nlm.nih.gov/pubmed/12138007

______________________________________________________________________________

Khajuria A, Zutshi U, Bedi KL. Permeability characteristics of piperine on oral absorption-an active alkaloid from peppers and a bioavailability enhancer. Indian journal of experimental biology. 1998; 36:46-50.

https://www.ncbi.nlm.nih.gov/pubmed/9536651

______________________________________________________________________________

Swanston-Flatt SK, Day C, Bailey CJ, Flatt PR. Traditional plant treatments for diabetes. Studies in normal and streptozotocin diabetic mice. Diabetologia. 1990 1; 33(8):462-4. https://www.semanticscholar.org/paper/Traditional-plant-treatments-for-diabetes.-Studies-Swanston-Flatt-Day/64f070b3e7ee728bf3f4129ccb685c9069ba5ea6

______________________________________________________________________________

Shirwaikar A, Rajendran K, Kumar CD, Bodla R. Antidiabetic activity of aqueous leaf extract of Annona squamosa in streptozotocin–nicotinamide type 2 diabetic rats. Journal of ethnopharmacology. 2004 1; 91(1):171-5. https://www.ncbi.nlm.nih.gov/pubmed/15036485

______________________________________________________________________________

Kiran G, Nandini CD, Ramesh HP, Salimath PV. Progression of early phase diabetic nephropathy in streptozotocin-induced diabetic rat’s evaluation of various kidney related parameters. Indian J Exp Biol. 2012; 50:133-140. https://www.ncbi.nlm.nih.gov/pubmed/22670476

______________________________________________________________________________

Patel S, Shan SR, Goyal KR. Antihyperglycemic antihyperlipidemic and antioxidant effects a dihar a polyherbal ayurvedic formulation in streptozotocin induced diabetic rats. Indian J Exp Biol. 2009; 47:564-70.

https://www.ncbi.nlm.nih.gov/pubmed/19761040

______________________________________________________________________________

Siu YP, Leung KT, Tong MK, Kwan TH. Use of allopurinol in slowing the progression of renal disease through its ability to lower serum uric acid level. Am J Kidney Dis.

; 47:51-9.https://www.ncbi.nlm.nih.gov/pubmed/16377385

______________________________________________________________________________

Chen KH, Hung CC, Hsu HH, Jing YH, Yang CW, Chen JK. Resveratrol ameliorates early diabetic nephropathy associated with suppression of augmented TGF-β/smad and ERK1/2 signaling in streptozotocin-induced diabetic rats. Chemico-biological interactions. 2011 Mar 15; 190(1):45-53.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863562/

______________________________________________________________________________

Ramkumar KM, Ponmanickam P, Velayuthaprabhu S, Archunan G, Rajaguru P. Protective effect of Gymnema montanum against renal damage in experimental diabetic rats. Food and Chemical Toxicology. 2009 1; 47(10):2516-21. https://www.researchgate.net/publication/26680448_Protective_effect_of_Gymnema_montanum_against_renal_damage_in_experimental_diabetic_rats

______________________________________________________________________________

Grover JK, Vats V, Rathi SS, Dawar R. Traditional Indian anti-diabetic plants attenuate progression of renal damage in streptozotocin induced diabetic mice. Journal of Ethnopharmacology. 2001 1; 76(3):233-8. https://www.ncbi.nlm.nih.gov/pubmed/11448544

______________________________________________________________________________

Ewis SA, Abdel‐Rahman MS. Effect of metformin on glutathione and magnesium in normal and streptozotocin‐induced diabetic rats. Journal of applied toxicology. 1995; 15(5):387-90.

https://www.ncbi.nlm.nih.gov/pubmed/8666722

______________________________________________________________________________

Loven D, Schedl H, Wilson H, Daabees TT, Stegink LD, Diekus M, Oberley L. Effect of insulin and oral glutathione on glutathione levels and superoxide dismutase activities in organs of rats with streptozocin-induced diabetes. Diabetes. 1986 1; 35(5):503-7. https://www.ncbi.nlm.nih.gov/pubmed/3514329

______________________________________________________________________________

Sözmen EY, Sözmen B, Delen Y, Onat T. Catalase/superoxide dismutase (SOD) and catalase/paraoxonase (PON) ratios may implicate poor glycemic control. Archives of medical research. 2001 1; 32(4):283-7.

https://www.ncbi.nlm.nih.gov/pubmed/11440784


No Supplementary Material available for this article.
Article Views      : 0
PDF Downloads : 0